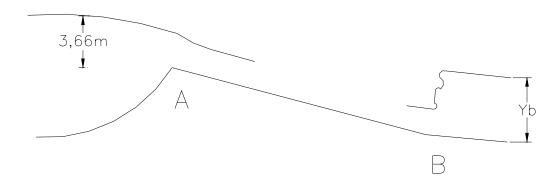
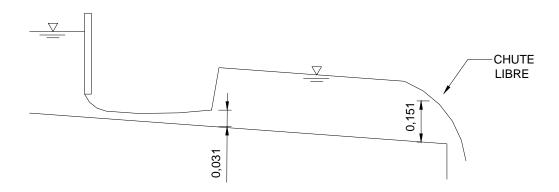

N.B : Pour tout calcul de ligne d'eau, l'incrément des profondeurs d'eau est de 10 cm pour des canaux de pentes non nulles est de 1cm pour des canaux de pentes nulles

Exercice 1 (7 points)


Soit un canal rectangulaire très long de pente 0,0001 arrivant dans un canal horizontal de longueur 10,20~m qui se termine en chute brusque dans un très grand réservoir d'eau. Les deux tronçons ont la même largeur, 4~m, et le même coefficient de Manning, n=0,015. À la jonction de ces deux tronçons, on prévoit la construction d'une vanne (coefficient de contraction =0,60). De plus, à 4~km en amont de cette vanne, on veut construire une passerelle. On veut garantir un débit constant de $3~m^3/s$ en tout temps.

- 1- En supposant que l'ouverture de la vanne est de 0,30 m et que le niveau d'eau dans le réservoir aval est constant, 1 m sous le niveau du second canal (de pente nulle) :
 - a- déterminer à quel niveau minimal (par rapport au canal horizontal) doit-on construire la passerelle sans qu'elle ne soit touchée par l'eau.
 - b- déterminer la force qu'exerce l'eau sur la vanne
- 2- **Estimer** (en prenant le soin d'être clair, précis et net) le niveau maximal dans le réservoir à partir duquel la passerelle sera touchée, déterminer alors la force qu'exerce l'eau sur la vanne dans ce cas.


Exercice 2 (4 points)

Un canal rectangulaire très long (largeur de 3 m; pente de 0.02; coefficient de Manning de 0.015) est alimenté par un réservoir en **A** sous une charge de 3.66 m. Quelle doit être la profondeur Y_b pour qu'un ressaut se produise juste dans la section **B** (la fin du long canal)?

Exercice 3 (4 points)

Soit un canal rectangulaire très long de 0.38 m de largeur et dont la pente du fond du canal est de 0.00025. Le ressaut se forme à une distance de 2 m de la vanne. En utilisant les mesures inscrites sur le schéma, déterminer le coefficient de rugosité de Manning de ce canal.

Exercice 4 (4 points)

Un canal rectangulaire, de pente 0,0001 et de longueur 50 m, est contrôlé par deux vannes (une à chaque extrémité) imposant un débit de $30 m^3/s$. Le fond de ce canal est composé de matériaux dont les caractéristiques sont : densité de 2,65, angle de frottement interne de 37° , $d_{35} = 2 cm$ et $d_{50} = 5 cm$. La température de l'eau est de $14^\circ C$ (viscosité cinématique = $1,186 \ 10^{-6} \ m^2/s$ et masse volumique = $999,1 \ kg/m^3$). Si on veut que ce canal soit libre d'érosion et de sédimentation, dimensionner ce canal en négligeant la rugosité des parois latérales.